Most Recent

Volume 19  Issue 4  

Using Virtual Reality to Augment Museum-Based Field Trips in a Preservice Elementary Science Methods Course

by Jason R. Harron, Anthony J. Petrosino & Sarah Jenevein
Full Article Show Abstract

Positioned in the context of experiential learning, this paper reports findings of a virtual reality field trip (VRFT) in conjunction with an in-person field trip involving preservice teachers in an elementary science methods course to a local natural history museum. Findings included that virtual reality (VR) is best used after a field trip to encourage student recall of the experience, but only when done for a limited time to avoid VR fatigue. The types of experiences that preservice teachers thought VR would be good for in their science classrooms included the ability to visit either inaccessible or unsafe locations, to explore scales of size that are either too big or too small, and to witness different eras or events at varying temporal scales. Furthermore, this study uncovered potential equity issues related to VRFTs being seen as a viable alternative if students could not afford to go on field trips. Further research needs to be conducted to better understand the impact of VRFTs on student learning outcomes and take advantage of recent improvements in VR technology.

Volume 19  Issue 4  

Robotics Integration for Learning With Technology

by Jiangmei Yuan, ChanMin Kim, Rogers Hill & Dongho Kim
Full Article Show Abstract

This qualitative study examined how preservice elementary teachers integrated robotics into science, technology, engineering, and mathematics (STEM) lesson designs and why they designed their lessons in a particular way. Participants’ lesson designs were collected, and semistructured interviews were conducted. The authors analyzed lesson designs to examine how participants integrated robotics into their lesson designs and interviews to explore why they designed their lessons in a particular way. Our findings suggest that, in general, preservice elementary teachers designed lessons for student learning with technology. Only one lesson was for student learning from technology. The rest were for student learning with technology or applied a mixed approach that supported both student learning with and from technology. Preservice teachers’ lesson designs seemed to have been influenced by their pleasant struggles during robot design, collaboration experience, robotics integration knowledge, STEM content knowledge, and conception of STEM integration. Implications for teacher education are presented.

Volume 19  Issue 3  

Using Digital Science Notebooks to Support Elementary Student Learning: Lessons and Perspectives From a Fifth-Grade Science Classroom

by Angelina Constantine & Karl G. Jung
Full Article PDF Show Abstract

The exploratory case study described in this paper examined the experiences of an elementary science teacher as he integrated iPads into his teaching. With the intent of finding a purposeful use for the district’s 1:1 iPad initiative in his science classroom, he adopted digital science notebooks for the first time. During planning sessions alongside an instructional coach, this teacher worked to harness the maximum potential of the digital notebooks’ capabilities to support his students’ science learning. Data collected from coaching conversations, observations, student notebooks, and a stimulated recall interview uncovered the ways the teacher planned for digital science notebooks and how he could use them to support student science learning. Findings show that structured page templates for students’ notebooks modified from previous work helped this teacher successfully incorporate the digital notebooks to enhance his students’ learning beyond what a traditional composition notebook can provide. Furthermore, the teacher’s perceptions of his experience with digital notebooks was overwhelmingly positive. He considered the value of digital notebooks to be superior to traditional notebooks and shared recommendations for other teachers who may also be considering using digital science notebooks for the first time.

Volume 19  Issue 3  

Use of Schema Theory and Multimedia Technology to Explore Preservice Students’ Cognitive Resources During an Earth Science Activity

by Catherine L. Quinlan
Full Article PDF Show Abstract

Meaningful integration of multimedia technology into the three-dimensional learning promoted by the Next Generation Science Standards (i.e., Science and Engineering Practices, Crosscutting Concepts, and Disciplinary Core Ideas) is critical in helping students to understand science. Furthermore, preservice teachers need to be able to engage in argument from evidence, as recommended by the National Research Council, before they can help students develop argumentation in the classroom setting. This study explored the dialogic arguments and conversations of five female African American preservice graduate elementary education students enrolled in a science methods course. Students carried out a Crime Scene Investigation Toolkit in Earth science that was created by the New York Hall of Science. Schema theory and Marshall’s (1995) knowledge types provide an explanatory framework to explore and explain participants’ dialogue. The findings show that schema theory has implications for understanding participants’ cognitive resources during an activity that integrated multimedia technology resources within a three-dimensional science investigation. The use of schema theory as a framework shed light on participants’ dialogues and was important in understanding how to integrate multimedia technology meaningfully into the three dimensions of the Next Generation Science Standards.